MathDB
IMC 2008 Day 1 P3

Source:

July 26, 2014
algebrapolynomialquadraticsIMCcollege contests

Problem Statement

Let pp be a polynomial with integer coefficients and let a1<a2<<aka_1<a_2<\cdots <a_k be integers. Given that p(ai)0  i=1,2,,kp(a_i)\ne 0\forall\; i=1,2,\cdots, k.
(a) Prove   aZ\exists\; a\in \mathbb{Z} such that p(ai)p(a)    i=1,2,,k p(a_i)\mid p(a)\;\;\forall i=1,2,\dots ,k (b) Does there exist aZa\in \mathbb{Z} such that i=1kp(ai)p(a) \prod_{i=1}^{k}p(a_i)\mid p(a)