MathDB
Today's calculation of Integral 363

Source: 2008 Shibaura Institute of Technology entrance exam

July 19, 2008
calculusintegrationcalculus computations

Problem Statement

For t0 t\geq 0, let a_n\equal{}\int_0^ t e^{nx}\ dx\ (n\equal{}0,\ 1,\ 2,\ 3). (1) Show that a_3\minus{}3a_2\plus{}3a_1\minus{}a_0\geq 0. (2) Show that e^ta_0\plus{}(e^t\minus{}1)a_1\minus{}a_2\geq 0.