MathDB
CSMO Grade 10 Problem 6

Source: China Southeast Mathematical Olympiad

August 1, 2017
algebraSequence

Problem Statement

The sequence {an}\{a_n\} satisfies a1=12a_1 = \frac{1}{2}, a2=38a_2 = \frac{3}{8}, and an+12+3anan+2=2an+1(an+an+2)(nN)a_{n + 1}^2 + 3 a_n a_{n + 2} = 2 a_{n + 1} (a_n + a_{n + 2}) (n \in \mathbb{N^*}). (1)(1) Determine the general formula of the sequence {an}\{a_n\}; (2)(2) Prove that for any positive integer nn, there is 0<an<12n+10 < a_n < \frac{1}{\sqrt{2n + 1}}.