For each real coefficient polynomial f(x)=a0+a1x+⋯+anxn, let
Γ(f(x))=a02+a12+⋯+am2.
Let be given polynomial P(x)=(x+1)(x+2)…(x+2020). Prove that there exists at least 2019 pairwise distinct polynomials Qk(x) with 1≤k≤22019 and each of it satisfies two following conditions:
i) degQk(x)=2020.
ii) Γ(Qk(x)n)=Γ(P(x)n) for all positive initeger n.