MathDB
TOT 051 1983 Autumn S3 vectors OK + OM + OP = OI, perp. related

Source:

August 18, 2019
vectorCircumcenterprojectionincentergeometry

Problem Statement

The centre OO of the circumcircle of ABC\vartriangle ABC lies inside the triangle. Perpendiculars are drawn rom OO on the sides. When produced beyond the sides they meet the circumcircle at points K,MK, M and PP. Prove that OK+OM+OP=OI\overrightarrow{OK} + \overrightarrow{OM} + \overrightarrow{OP} = \overrightarrow{OI}, where II is the centre of the inscribed circle of ABC\vartriangle ABC.
(V Galperin, Moscow)