MathDB
Putnam 1999 B3

Source:

October 28, 2012
Putnamlimitalgebrapolynomialmodular arithmeticcollege contestsPutnam calculus

Problem Statement

Let A={(x,y):0x,y<1}.A=\{(x,y): 0\le x,y < 1\}. For (x,y)A,(x,y)\in A, let S(x,y)=12mn2xmyn,S(x,y)=\sum_{\frac12\le\frac mn\le2}x^my^n, where the sum ranges over all pairs (m,n)(m,n) of positive integers satisfying the indicated inequalities. Evaluate lim(x,y)(1,1),(x,y)A(1xy2)(1x2y)S(x,y).\lim_{(x,y)\to(1,1),(x,y)\in A}(1-xy^2)(1-x^2y)S(x,y).