MathDB
f1 o g, f2 o g, ... reducible

Source: IMOC 2018 A2

August 15, 2021
polynomialalgebrairreducibility

Problem Statement

For arbitrary non-constant polynomials f1(x),,f2018(x)Z[x]f_1(x),\ldots,f_{2018}(x)\in\mathbb Z[x], is it always possible to find a polynomial g(x)Z[x]g(x)\in\mathbb Z[x] such that f1(g(x)),,f2018(g(x))f_1(g(x)),\ldots,f_{2018}(g(x))are all reducible.