MathDB
weak convexity, prove inequality

Source: VJIMC 2007 1.4

June 24, 2021
inequalitiesfunction

Problem Statement

Let f:[0,1][0,)f:[0,1]\to[0,\infty) be an arbitrary function satisfying f(x)+f(y)2f(x+y2)+1\frac{f(x)+f(y)}2\le f\left(\frac{x+y}2\right)+1 for all pairs x,y[0,1]x,y\in[0,1]. Prove that for all 0u<v<w10\le u<v<w\le1, wvwuf(u)+vuwuf(w)f(v)+2.\frac{w-v}{w-u}f(u)+\frac{v-u}{w-u}f(w)\le f(v)+2.