MathDB
Putnam 1997 B4

Source:

May 30, 2014
Putnaminequalitiesfloor functioncollege contests

Problem Statement

Let am,na_{m,n} denote the coefficient of xnx^n in the expansion (1+x+x2)n(1+x+x^2)^n. Prove the inequality for all integers k0k\ge 0 : 0=02k3(1)ak,1 0\le \sum_{\ell=0}^{\left\lfloor{\frac{2k}{3}}\right\rfloor} (-1)^{\ell} a_{k-\ell,\ell}\le 1