MathDB
Problems
Contests
Undergraduate contests
Putnam
1997 Putnam
4
Putnam 1997 B4
Putnam 1997 B4
Source:
May 30, 2014
Putnam
inequalities
floor function
college contests
Problem Statement
Let
a
m
,
n
a_{m,n}
a
m
,
n
denote the coefficient of
x
n
x^n
x
n
in the expansion
(
1
+
x
+
x
2
)
n
(1+x+x^2)^n
(
1
+
x
+
x
2
)
n
. Prove the inequality for all integers
k
≥
0
k\ge 0
k
≥
0
:
0
≤
∑
ℓ
=
0
⌊
2
k
3
⌋
(
−
1
)
ℓ
a
k
−
ℓ
,
ℓ
≤
1
0\le \sum_{\ell=0}^{\left\lfloor{\frac{2k}{3}}\right\rfloor} (-1)^{\ell} a_{k-\ell,\ell}\le 1
0
≤
ℓ
=
0
∑
⌊
3
2
k
⌋
(
−
1
)
ℓ
a
k
−
ℓ
,
ℓ
≤
1
Back to Problems
View on AoPS