MathDB
P17 [Geometry] - Turkish NMO 1st Round - 2003

Source:

May 15, 2014
geometry

Problem Statement

The circle C1C_1 and the circle C2C_2 passing through the center of C1C_1 intersect each other at AA and BB. The line tangent to C2C_2 at BB meets C1C_1 at BB and DD. If the radius of C1C_1 is 3\sqrt 3 and the radius of C2C_2 is 22, find ABBD\dfrac{|AB|}{|BD|}.
<spanclass=latexbold>(A)</span> 12<spanclass=latexbold>(B)</span> 32<spanclass=latexbold>(C)</span> 232<spanclass=latexbold>(D)</span> 1<spanclass=latexbold>(E)</span> 52 <span class='latex-bold'>(A)</span>\ \dfrac 12 \qquad<span class='latex-bold'>(B)</span>\ \dfrac {\sqrt 3}2 \qquad<span class='latex-bold'>(C)</span>\ \dfrac {2\sqrt 3}2 \qquad<span class='latex-bold'>(D)</span>\ 1 \qquad<span class='latex-bold'>(E)</span>\ \dfrac {\sqrt 5}2