MathDB
Problems
Contests
Undergraduate contests
IMC
2005 IMC
5
IMC 2005 day1 pb 5
IMC 2005 day1 pb 5
Source: Peter
July 26, 2005
limit
integration
calculus
IMC
college contests
Problem Statement
5) f twice cont diff,
∣
f
′
′
(
x
)
+
2
x
f
′
(
x
)
+
(
x
2
+
1
)
f
(
x
)
∣
≤
1
|f''(x)+2xf'(x)+(x^{2}+1)f(x)|\leq 1
∣
f
′′
(
x
)
+
2
x
f
′
(
x
)
+
(
x
2
+
1
)
f
(
x
)
∣
≤
1
. prove
lim
x
→
+
∞
f
(
x
)
=
0
\lim_{x\rightarrow +\infty} f(x) = 0
lim
x
→
+
∞
f
(
x
)
=
0
Back to Problems
View on AoPS