MathDB
Problems
Contests
International Contests
IMO Longlists
1990 IMO Longlists
4
Find the minimal value of the function - ILL 1990 VIE1
Find the minimal value of the function - ILL 1990 VIE1
Source:
September 19, 2010
function
trigonometry
inequalities unsolved
inequalities
Problem Statement
Find the minimal value of the function
f
(
x
)
=
15
−
12
cos
x
+
4
−
2
3
sin
x
+
7
−
4
3
sin
x
+
10
−
4
3
sin
x
−
6
cos
x
\begin{array}{c}\ f(x) =\sqrt{15 - 12 \cos x} + \sqrt{4 -2 \sqrt 3 \sin x}+\sqrt{7-4\sqrt 3 \sin x} +\sqrt{10-4 \sqrt 3 \sin x - 6 \cos x}\end{array}
f
(
x
)
=
15
−
12
cos
x
+
4
−
2
3
sin
x
+
7
−
4
3
sin
x
+
10
−
4
3
sin
x
−
6
cos
x
Back to Problems
View on AoPS