MathDB
convex-type sequence is bounded, hence convergent

Source: VJIMC 1997 1.2

September 26, 2021
Sequenceslimitsreal analysis

Problem Statement

Let α(0,1]\alpha\in(0,1] be a given real number and let a real sequence {an}n=1\{a_n\}^\infty_{n=1} satisfy the inequality an+1αan+(1α)an1for n=2,3,a_{n+1}\le\alpha a_n+(1-\alpha)a_{n-1}\qquad\text{for }n=2,3,\ldotsProve that if {an}\{a_n\} is bounded, then it must be convergent.