For a given natural number n>3, the real numbers x1,x2,…,xn,xn+1,xn+2 satisfy the conditions 0<x1<x2<⋯<xn<xn+1<xn+2. Find the minimum possible value of
(∑k=1nxk+12+xkxk+2xk+1xk+2)(∑l=1nxlxl+1xl+12+xlxl+2)(∑i=1nxixi+1)(∑j=1nxj+1xj+2) and find all (n+2)-tuplets of real numbers (x1,x2,…,xn,xn+1,xn+2) which gives this value.