MathDB
Iteration of a weird function

Source: St. Petersburg 2023 11.5

August 12, 2023
functionalgebra

Problem Statement

Let a>1a>1 be a positive integer and let f(n)=n+[a{n2}]f(n)=n+[a\{n\sqrt{2}\}]. Show that there exists a positive integer nn, such that f(f(n))=f(n)f(f(n))=f(n), but f(n)nf(n) \neq n.