MathDB
Putnam 1963 B5

Source: Putnam 1963

May 1, 2022
Putnaminequalitieslimitseries

Problem Statement

Let (an)(a_n ) be a sequence of real numbers satisfying the inequalities 0ak100an    for  nk2n    and    n=1,2,, 0 \leq a_k \leq 100a_n \;\; \text{for} \;\, n \leq k \leq 2n \;\; \text{and} \;\; n=1,2,\ldots, and such that the series n=0an\sum_{n=0}^{\infty} a_n converges. Prove that limnnan=0.\lim_{n\to \infty} n a_n = 0.