Let m>1 be an integer. Find the smallest positive integer n, such that for any integers a1,a2,…,an;b1,b2,…,bn there exists integers x1,x2,…,xn satisfying the following two conditions: i) There exists i∈{1,2,…,n} such that xi and m are coprimeii) ∑i=1naixi≡∑i=1nbixi≡0(modm)