MathDB
Problems
Contests
International Contests
IMO Shortlist
2023 ISL
A5
Permutations inequality
Permutations inequality
Source: ISL 2023 A5
July 17, 2024
inequalities
AZE BMO TST
TST
IMO Shortlist
Problem Statement
Let
a
1
,
a
2
,
…
,
a
2023
a_1,a_2,\dots,a_{2023}
a
1
,
a
2
,
…
,
a
2023
be positive integers such that[*]
a
1
,
a
2
,
…
,
a
2023
a_1,a_2,\dots,a_{2023}
a
1
,
a
2
,
…
,
a
2023
is a permutation of
1
,
2
,
…
,
2023
1,2,\dots,2023
1
,
2
,
…
,
2023
, and [*]
∣
a
1
−
a
2
∣
,
∣
a
2
−
a
3
∣
,
…
,
∣
a
2022
−
a
2023
∣
|a_1-a_2|,|a_2-a_3|,\dots,|a_{2022}-a_{2023}|
∣
a
1
−
a
2
∣
,
∣
a
2
−
a
3
∣
,
…
,
∣
a
2022
−
a
2023
∣
is a permutation of
1
,
2
,
…
,
2022
1,2,\dots,2022
1
,
2
,
…
,
2022
.Prove that
max
(
a
1
,
a
2023
)
≥
507
\max(a_1,a_{2023})\ge 507
max
(
a
1
,
a
2023
)
≥
507
.
Back to Problems
View on AoPS