MathDB
closing down k South Adrican airports

Source: 2023 South Africa National Olympiad p5 - SAMO

May 18, 2024
combinatorics

Problem Statement

South Adrican Magical Flights (SAMF) operates flights between South Adrican airports. If there is a flight from airport AA to airpost BB, there will be also a flight from BB to AA. The SAMF headquarters are located in Kimberley. Every airport that is served by Kimberley can be reached from Kimberley in precisely one way. This way of reaching Kimberley may involve stopping at other airports on the way. (For example, it may happen that you can get to Kimberley by flying from Durban to Bloemfontein and then from to Bloemfontein to Kimberley. In that case there is no other way to get from Durban to Kimberley. For example, there would be no direct Hight from Durban to Kimberley.) An airport (other than Kimberley) is called terminal if there are flights to (and from) precisely one other airport. Suppose that there are tt terminal airports. Due to budget cuts, SAMF decides to close down kk of the airports. It should still be possible to reach each of the remaining airports from Kimberley. Let CC be the number of choices for the kk destinations that are discontinued. Prove that t!k!(tk)C(t+k1)!k!(t1)!.\frac{t!}{k!(t-k)} \le C \le \frac{(t+k-1)!}{k!(t-1)!} .