MathDB
Problems
Contests
National and Regional Contests
Turkey Contests
Turkey Team Selection Test
1994 Turkey Team Selection Test
1
Turkey TST 1994 - P4
Turkey TST 1994 - P4
Source:
March 13, 2011
ratio
geometry
geometry proposed
Problem Statement
Let
P
,
Q
,
R
P,Q,R
P
,
Q
,
R
be points on the sides of
△
A
B
C
\triangle ABC
△
A
BC
such that
P
∈
[
A
B
]
,
Q
∈
[
B
C
]
,
R
∈
[
C
A
]
P \in [AB],Q\in[BC],R\in[CA]
P
∈
[
A
B
]
,
Q
∈
[
BC
]
,
R
∈
[
C
A
]
and
∣
A
P
∣
∣
A
B
∣
=
∣
B
Q
∣
∣
B
C
∣
=
∣
C
R
∣
∣
C
A
∣
=
k
<
1
2
\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12
∣
A
B
∣
∣
A
P
∣
=
∣
BC
∣
∣
BQ
∣
=
∣
C
A
∣
∣
CR
∣
=
k
<
2
1
If
G
G
G
is the centroid of
△
A
B
C
\triangle ABC
△
A
BC
, find the ratio
A
r
e
a
(
△
P
Q
G
)
A
r
e
a
(
△
P
Q
R
)
\frac{Area(\triangle PQG)}{Area(\triangle PQR)}
A
re
a
(
△
PQR
)
A
re
a
(
△
PQG
)
.
Back to Problems
View on AoPS