MathDB
Turkey TST 1994 - P4

Source:

March 13, 2011
ratiogeometrygeometry proposed

Problem Statement

Let P,Q,RP,Q,R be points on the sides of ABC\triangle ABC such that P[AB],Q[BC],R[CA]P \in [AB],Q\in[BC],R\in[CA] and APAB=BQBC=CRCA=k<12\frac{|AP|}{|AB|} = \frac {|BQ|}{|BC|} =\frac{|CR|}{|CA|} =k < \frac 12 If GG is the centroid of ABC\triangle ABC, find the ratio Area(PQG)Area(PQR)\frac{Area(\triangle PQG)}{Area(\triangle PQR)} .