MathDB
Euclidean plane

Source:

September 13, 2010
trigonometrygeometry unsolvedgeometry

Problem Statement

Let OO be a point on the oriented Euclidean plane and (i,j)(\mathbf i, \mathbf j) a directly oriented orthonormal basis. Let CC be the circle of radius 11, centered at OO. For every real number tt and non-negative integern n let MnM_n be the point on CC for which i,OMn=cos2nt.\langle \mathbf i , \overrightarrow{OM_n} \rangle = \cos 2^n t. (or OMn=cos2nti+sin2ntj\overrightarrow{OM_n} =\cos 2^n t \mathbf i +\sin 2^n t \mathbf j). Let k2k \geq 2 be an integer. Find all real numbers t[0,2π)t \in [0, 2\pi) that satisfy
(i) M0=MkM_0 = M_k, and
(ii) if one starts from M0M0 and goes once around CC in the positive direction, one meets successively the points M0,M1,,Mk2,Mk1M_0,M_1, \dots,M_{k-2},M_{k-1}, in this order.