MathDB
Convolution identity - OIMU 2006 Problem 6

Source:

August 30, 2010
real analysisalgebra proposedalgebra

Problem Statement

Let x0(t)=1x_0(t)=1, xk+1(t)=(1+tk+1)xk(t)x_{k+1}(t)=(1+t^{k+1})x_k(t) for all k0k\geq 0; yn,0(t)=1y_{n,0}(t)=1, yn,k(t)=tnk+11tk1yn,k1(t)y_{n,k}(t)=\frac{t^{n-k+1}-1}{t^k-1}y_{n,k-1}(t) for all n0n\geq 0, 1kn1\leq k \leq n.
Prove that j=0n1(1)jxnj1(t)yn,j(t)=1(1)n2\sum_{j=0}^{n-1}(-1)^j x_{n-j-1}(t)y_{n,j}(t)=\frac{1-(-1)^n}{2} for all n1n\geq 1.