MathDB
Problems
Contests
Undergraduate contests
IberoAmerican Olympiad For University Students
2006 IberoAmerican Olympiad For University Students
6
Convolution identity - OIMU 2006 Problem 6
Convolution identity - OIMU 2006 Problem 6
Source:
August 30, 2010
real analysis
algebra proposed
algebra
Problem Statement
Let
x
0
(
t
)
=
1
x_0(t)=1
x
0
(
t
)
=
1
,
x
k
+
1
(
t
)
=
(
1
+
t
k
+
1
)
x
k
(
t
)
x_{k+1}(t)=(1+t^{k+1})x_k(t)
x
k
+
1
(
t
)
=
(
1
+
t
k
+
1
)
x
k
(
t
)
for all
k
≥
0
k\geq 0
k
≥
0
;
y
n
,
0
(
t
)
=
1
y_{n,0}(t)=1
y
n
,
0
(
t
)
=
1
,
y
n
,
k
(
t
)
=
t
n
−
k
+
1
−
1
t
k
−
1
y
n
,
k
−
1
(
t
)
y_{n,k}(t)=\frac{t^{n-k+1}-1}{t^k-1}y_{n,k-1}(t)
y
n
,
k
(
t
)
=
t
k
−
1
t
n
−
k
+
1
−
1
y
n
,
k
−
1
(
t
)
for all
n
≥
0
n\geq 0
n
≥
0
,
1
≤
k
≤
n
1\leq k \leq n
1
≤
k
≤
n
.Prove that
∑
j
=
0
n
−
1
(
−
1
)
j
x
n
−
j
−
1
(
t
)
y
n
,
j
(
t
)
=
1
−
(
−
1
)
n
2
\sum_{j=0}^{n-1}(-1)^j x_{n-j-1}(t)y_{n,j}(t)=\frac{1-(-1)^n}{2}
∑
j
=
0
n
−
1
(
−
1
)
j
x
n
−
j
−
1
(
t
)
y
n
,
j
(
t
)
=
2
1
−
(
−
1
)
n
for all
n
≥
1
n\geq 1
n
≥
1
.
Back to Problems
View on AoPS