MathDB
P36 [Algebra] - Turkish NMO 1st Round - 2003

Source:

May 31, 2014

Problem Statement

a1,a2,,a2003a_1,a_2, \cdots , a_{2003} are integers such that a1=1|a_1| = 1 and ai+1=ai+1|a_{i+1}|=|a_i+1| (1i2002)(1\leq i \leq 2002). What is the minimal value of a1+a2++a2003|a_1+a_2+\cdots + a_{2003}|?
<spanclass=latexbold>(A)</span> 4<spanclass=latexbold>(B)</span> 34<spanclass=latexbold>(C)</span> 56<spanclass=latexbold>(D)</span> 65<spanclass=latexbold>(E)</span> None of the preceding <span class='latex-bold'>(A)</span>\ 4 \qquad<span class='latex-bold'>(B)</span>\ 34 \qquad<span class='latex-bold'>(C)</span>\ 56 \qquad<span class='latex-bold'>(D)</span>\ 65 \qquad<span class='latex-bold'>(E)</span>\ \text{None of the preceding}