MathDB
2017 China Western Mathematical Olympiad Q8

Source: Sichuan Nanchong

August 14, 2017
inequalitiesmaximum and minimum

Problem Statement

Let a1,a2,,an>0a_1,a_2,\cdots,a_n>0 (n2)(n\geq 2). Prove thati=1nmax{a1,a2,,ai}min{ai,ai+1,,an}n2n1i=1nai2\sum_{i=1}^n max\{a_1,a_2,\cdots,a_i \} \cdot min \{a_i,a_{i+1},\cdots,a_n\}\leq \frac{n}{2\sqrt{n-1}}\sum_{i=1}^n a^2_i