MathDB
Today's calculation of Integral 163

Source: created by kunny

October 21, 2006
calculusintegrationtrigonometrycalculus computations

Problem Statement

Let In=0π4tannx dx (n=0, 1, 2, ).I_{n}=\int_{0}^{\frac{\pi}{4}}\tan^{n}x\ dx\ (n=0,\ 1,\ 2,\ \cdots). Find n=0{In+22+(In+1+In+3)In+2+In+1In+3}.\sum_{n=0}^{\infty}\{{I_{n+2}}^{2}+(I_{n+1}+I_{n+3})I_{n+2}+I_{n+1}I_{n+3}\}.