MathDB
Problems
Contests
National and Regional Contests
Greece Contests
Greece National Olympiad
1991 Greece National Olympiad
1
{f(f(x))=x+1, f: Ζ->Ζ
{f(f(x))=x+1, f: Ζ->Ζ
Source: 1991 Greece MO Grade XII p1
September 6, 2024
function
algebra
functional
Problem Statement
Prove that there is no function
f
:
Z
→
Z
f: \mathbb{Z}\to\mathbb{Z}
f
:
Z
→
Z
such that
f
(
f
(
x
)
)
=
x
+
1
f(f(x))=x+1
f
(
f
(
x
))
=
x
+
1
, for all
x
∈
Z
x\in\mathbb{Z}
x
∈
Z
.
Back to Problems
View on AoPS