MathDB
Real linear subspace closed under multiplication

Source: Czech and Slovak Olympiad 1975, National Round, Problem 6

July 20, 2024
algebralinear algebraSubsets

Problem Statement

Let MR2\mathbf M\subseteq\mathbb R^2 be a set with the following properties: 1) there is a pair (a,b)M(a,b)\in\mathbf M such that ab(ab)0,ab(a-b)\neq0, 2) if (x1,y1),(x2,y2)M\left(x_1,y_1\right),\left(x_2,y_2\right)\in\mathbf M and cRc\in\mathbb R then also (cx1,cy1),(x1+x2,y1+y2),(x1x2,y1y2)M.\left(cx_1,cy_1\right),\left(x_1+x_2,y_1+y_2\right),\left(x_1x_2,y_1y_2\right)\in\mathbf M. Show that in fact M=R2.\mathbf M=\mathbb R^2.