MathDB
Problems
Contests
National and Regional Contests
India Contests
ISI B.Stat Entrance Exam
2011 ISI B.Stat Entrance Exam
8
I_n = \int (0 to n*pi) sinxdx/(1+x)
I_n = \int (0 to n*pi) sinxdx/(1+x)
Source: ISI BS 2011, P8
March 31, 2013
integration
trigonometry
calculus
calculus computations
Problem Statement
Let
I
n
=
∫
0
n
π
sin
x
1
+
x
d
x
,
n
=
1
,
2
,
3
,
4
I_n =\int_{0}^{n\pi} \frac{\sin x}{1+x} \, dx , \ \ \ \ n=1,2,3,4
I
n
=
∫
0
nπ
1
+
x
sin
x
d
x
,
n
=
1
,
2
,
3
,
4
Arrange
I
1
,
I
2
,
I
3
,
I
4
I_1, I_2, I_3, I_4
I
1
,
I
2
,
I
3
,
I
4
in increasing order of magnitude. Justify your answer.
Back to Problems
View on AoPS