MathDB
Sequence and Euler Function

Source: 2016 Taiwan TST Round 3

July 23, 2016
Eulers functionSequencenumber theoryinequalities

Problem Statement

Let kk be a positive integer. A sequence a0,a1,...,an,n>0a_0,a_1,...,a_n,n>0 of positive integers satisfies the following conditions: (i)(i) a0=an=1a_0=a_n=1; (ii)(ii) 2aik2\leq a_i\leq k for each i=1,2,...,n1i=1,2,...,n-1; (iii)(iii)For each j=2,3,...,kj=2,3,...,k, the number jj appears ϕ(j)\phi(j) times in the sequence a0,a1,...,ana_0,a_1,...,a_n, where ϕ(j)\phi(j) is the number of positive integers that do not exceed jj and are coprime to jj; (iv)(iv)For any i=1,2,...,n1i=1,2,...,n-1, gcd(ai,ai1)=1=gcd(ai,ai+1)\gcd(a_i,a_{i-1})=1=\gcd(a_i,a_{i+1}), and aia_i divides ai1+ai+1a_{i-1}+a_{i+1}. Suppose there is another sequence b0,b1,...,bnb_0,b_1,...,b_n of integers such that bi+1ai+1>biai\frac{b_{i+1}}{a_{i+1}}>\frac{b_i}{a_i} for all i=0,1,...,n1i=0,1,...,n-1. Find the minimum value of bnb0b_n-b_0.