MathDB
Inequality from the first apmo

Source: APMO 1989

March 10, 2006
inequalitiesn-variable inequality

Problem Statement

Let x1x_1, x2x_2, \cdots, xnx_n be positive real numbers, and let S=x1+x2++xn. S = x_1 + x_2 + \cdots + x_n. Prove that (1+x1)(1+x2)(1+xn)1+S+S22!+S33!++Snn! (1 + x_1)(1 + x_2) \cdots (1 + x_n) \leq 1 + S + \frac{S^2}{2!} + \frac{S^3}{3!} + \cdots + \frac{S^n}{n!}