MathDB
Problems
Contests
International Contests
Balkan MO Shortlist
2012 Balkan MO Shortlist
A2
A nice inequality with a+b+c=sqrt2
A nice inequality with a+b+c=sqrt2
Source: BMO 2012
June 28, 2013
inequalities
3-variable inequality
square root inequality
Balkan
lagrange
BMO
imo 65th gold champion
Problem Statement
Let
a
,
b
,
c
≥
0
a,b,c\ge 0
a
,
b
,
c
≥
0
and
a
+
b
+
c
=
2
a+b+c=\sqrt2
a
+
b
+
c
=
2
. Show that
1
1
+
a
2
+
1
1
+
b
2
+
1
1
+
c
2
≥
2
+
1
3
\frac1{\sqrt{1+a^2}}+\frac1{\sqrt{1+b^2}}+\frac1{\sqrt{1+c^2}} \ge 2+\frac1{\sqrt3}
1
+
a
2
1
+
1
+
b
2
1
+
1
+
c
2
1
≥
2
+
3
1
In general if
a
1
,
a
2
,
⋯
,
a
n
≥
0
a_1, a_2, \cdots , a_n \ge 0
a
1
,
a
2
,
⋯
,
a
n
≥
0
and
∑
i
=
1
n
a
i
=
2
\sum_{i=1}^n a_i=\sqrt2
∑
i
=
1
n
a
i
=
2
we have
∑
i
=
1
n
1
1
+
a
i
2
≥
(
n
−
1
)
+
1
3
\sum_{i=1}^n \frac1{\sqrt{1+a_i^2}} \ge (n-1)+\frac1{\sqrt3}
i
=
1
∑
n
1
+
a
i
2
1
≥
(
n
−
1
)
+
3
1
Back to Problems
View on AoPS