MathDB
A nice inequality with a+b+c=sqrt2

Source: BMO 2012

June 28, 2013
inequalities3-variable inequalitysquare root inequalityBalkanlagrangeBMOimo 65th gold champion

Problem Statement

Let a,b,c0a,b,c\ge 0 and a+b+c=2a+b+c=\sqrt2. Show that 11+a2+11+b2+11+c22+13\frac1{\sqrt{1+a^2}}+\frac1{\sqrt{1+b^2}}+\frac1{\sqrt{1+c^2}} \ge 2+\frac1{\sqrt3}
In general if a1,a2,,an0a_1, a_2, \cdots , a_n \ge 0 and i=1nai=2\sum_{i=1}^n a_i=\sqrt2 we have i=1n11+ai2(n1)+13\sum_{i=1}^n \frac1{\sqrt{1+a_i^2}} \ge (n-1)+\frac1{\sqrt3}