MathDB
Triple summation of fractions

Source: Canada Junior MO 2024/2

March 8, 2024

Problem Statement

Let In=i=1nj=1nk=1nmin(1i,1j,1k)I_n=\sum_{i=1}^n\sum_{j=1}^n\sum_{k=1}^n \min \left( \frac{1}{i}, \frac{1}{j}, \frac{1}{k} \right) and let Hn=1+12+1nH_n=1+\frac{1}{2}+\ldots \frac{1}{n} Find InHnI_n-H_n in terms of nn (Paraphrased)