MathDB
IMO LongList 1967, Romania 6

Source: IMO LongList 1967, Romania 6

December 16, 2004
Inequalitypolynomialalgebran-variable inequality

Problem Statement

Prove the following inequality: i=1kxii=1kxin1i=1kxin+k1,\prod^k_{i=1} x_i \cdot \sum^k_{i=1} x^{n-1}_i \leq \sum^k_{i=1} x^{n+k-1}_i, where xi>0,x_i > 0, kN,nN.k \in \mathbb{N}, n \in \mathbb{N}.