Let d≤n be positive integers and A a real d×n matrix. Let σ(A) be the supremum of infv∈W,∣v∣=1∣Av∣ over all subspaces W of Rn with dimension d.For each j≤d, let r(j)∈Rn be the jth row vector of A. Show that:σ(A)≤i≤dmind(r(i),⟨r(j),j=i⟩)≤nσ(A)In which all are euclidian norms and d(r(i),⟨r(j),j=i⟩) denotes the distance between r(i) and the span of r(j),1≤j≤d,j=i.