MathDB
Matrix and distances

Source: OBM 2017

March 20, 2023
linear algebramatrixvector geometryMath Olympiads

Problem Statement

Let dnd\leq n be positive integers and AA a real d×nd\times n matrix. Let σ(A)\sigma(A) be the supremum of infvW,v=1Av\inf_{v\in W,|v|=1}|Av| over all subspaces WW of RnR^n with dimension dd.
For each jdj \leq d, let r(j)Rnr(j) \in \mathbb{R}^n be the jjth row vector of AA. Show that:
σ(A)minidd(r(i),r(j),ji)nσ(A)\sigma(A) \leq \min_{i\leq d} d(r(i), \langle r(j), j\ne i\rangle) \leq \sqrt{n}\sigma(A)
In which all are euclidian norms and d(r(i),r(j),ji)d(r(i), \langle r(j), j\ne i\rangle) denotes the distance between r(i)r(i) and the span of r(j),1jd,jir(j), 1 \leq j \leq d, j\ne i.