MathDB
Triangular table

Source: Czech and Slovak Olympiad 1952, National Round, Problem 2

April 11, 2020
tablealgebra

Problem Statement

Consider a triangular table of positive integers \begin{matrix} & & & a_{11} & a_{12} & a_{13} & & & \\ & & a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & & \\ & a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & a_{36} & a_{37} & \\ \iddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots \end{matrix} The first row consists of odd numbers only. For i>1,j1i>1,j\ge1 we have aij=ai1,j2+ai1,j1+ai1,j.a_{ij}=a_{i-1,j-2}+a_{i-1,j-1}+a_{i-1,j}. If we get out of range with the second index, we consider such aa to be zero (eg. a22=0+a11+a12a_{22}=0+a_{11}+a_{12} and a37=a25+0+0a_{37}=a_{25}+0+0). Show that for every i>1i>1 there is j{1,,2i+1}j\in\{1,\ldots,2i+1\} such that aija_{ij} is even.