MathDB
Problems
Contests
National and Regional Contests
Russia Contests
All-Russian Olympiad
1986 All Soviet Union Mathematical Olympiad
436
ASU 436 All Soviet Union MO 1986 |sin1|+|sin2|+|sin(3n-1)|+|sin(3n)|>8n/5.
ASU 436 All Soviet Union MO 1986 |sin1|+|sin2|+|sin(3n-1)|+|sin(3n)|>8n/5.
Source:
August 7, 2019
trigonometry
inequalities
Problem Statement
Prove that for every natural
n
n
n
the following inequality is valid
∣
sin
1
∣
+
∣
sin
2
∣
+
∣
sin
(
3
n
−
1
)
∣
+
∣
sin
3
n
∣
>
8
n
5
|\sin 1| + |\sin 2| + |\sin (3n-1)| + |\sin 3n| > \frac{8n}{5}
∣
sin
1∣
+
∣
sin
2∣
+
∣
sin
(
3
n
−
1
)
∣
+
∣
sin
3
n
∣
>
5
8
n
Back to Problems
View on AoPS