MathDB
Problems
Contests
International Contests
IMO Longlists
1977 IMO Longlists
6
Sines and Cosines - [ILL 1977]
Sines and Cosines - [ILL 1977]
Source:
January 11, 2011
trigonometry
function
inequalities
induction
algebra unsolved
algebra
Problem Statement
Let
x
1
,
x
2
,
…
,
x
n
(
n
≥
1
)
x_1, x_2, \ldots , x_n \ (n \geq 1)
x
1
,
x
2
,
…
,
x
n
(
n
≥
1
)
be real numbers such that
0
≤
x
j
≤
π
,
j
=
1
,
2
,
…
,
n
.
0 \leq x_j \leq \pi, \ j = 1, 2,\ldots, n.
0
≤
x
j
≤
π
,
j
=
1
,
2
,
…
,
n
.
Prove that if
∑
j
=
1
n
(
cos
x
j
+
1
)
\sum_{j=1}^n (\cos x_j +1)
∑
j
=
1
n
(
cos
x
j
+
1
)
is an odd integer, then
∑
j
=
1
n
sin
x
j
≥
1.
\sum_{j=1}^n \sin x_j \geq 1.
∑
j
=
1
n
sin
x
j
≥
1.
Back to Problems
View on AoPS