MathDB
Sines and Cosines - [ILL 1977]

Source:

January 11, 2011
trigonometryfunctioninequalitiesinductionalgebra unsolvedalgebra

Problem Statement

Let x1,x2,,xn (n1)x_1, x_2, \ldots , x_n \ (n \geq 1) be real numbers such that 0xjπ, j=1,2,,n.0 \leq x_j \leq \pi, \ j = 1, 2,\ldots, n. Prove that if j=1n(cosxj+1)\sum_{j=1}^n (\cos x_j +1) is an odd integer, then j=1nsinxj1.\sum_{j=1}^n \sin x_j \geq 1.