MathDB
periodic continuous implies sequence is dense

Source: Miklos Schweitzer 2020, Problem 2

December 1, 2020
analysisfunctioncollege contestsMiklos Schweitzerreal analysis

Problem Statement

Prove that if f ⁣:RRf\colon \mathbb{R} \to \mathbb{R} is a continuous periodic function and αR\alpha \in \mathbb{R} is irrational, then the sequence {nα+f(nα)}n=1\{n\alpha+f(n\alpha)\}_{n=1}^{\infty} modulo 1 is dense in [0,1][0,1].