MathDB
Miklos Schweitzer 1966_10

Source:

September 29, 2008
integrationprobability and stats

Problem Statement

For a real number x x in the interval (0,1) (0,1) with decimal representation 0.a1(x)a2(x)...an(x)..., 0.a_1(x)a_2(x)...a_n(x)..., denote by n(x) n(x) the smallest nonnegative integer such that \overline{a_{n(x)\plus{}1}a_{n(x)\plus{}2}a_{n(x)\plus{}3}a_{n(x)\plus{}4}}\equal{}1966 . Determine 01n(x)dx \int_0^1n(x)dx. (abcd \overline{abcd} denotes the decimal number with digits a,b,c,d. a,b,c,d .) A. Renyi