MathDB
(a+b)(b+c)(c+a) ≥ 8(a+b−c)(b+c−a)(c+a−b) (ILL 1970, P44)

Source: 0

May 22, 2011
inequalities

Problem Statement

If a,b,ca, b, c are side lengths of a triangle, prove that (a+b)(b+c)(c+a)8(a+bc)(b+ca)(c+ab).(a + b)(b + c)(c + a) \geq 8(a + b - c)(b + c - a)(c + a - b).