Continued sequence fraction
Source: IMO Shortlist 1992, Problem 18
August 13, 2008
floor functionalgebraSequenceFibonacciFibonacci sequenceInequalityIMO Shortlist
Problem Statement
Let denote the greatest integer less than or equal to Pick any in and define the sequence by x_{n\plus{}1} \equal{} 0 if x_n \equal{} 0 and x_{n\plus{}1} \equal{} \frac{1}{x_n} \minus{} \left \lfloor \frac{1}{x_n} \right \rfloor otherwise. Prove that
x_1 \plus{} x_2 \plus{} \ldots \plus{} x_n < \frac{F_1}{F_2} \plus{} \frac{F_2}{F_3} \plus{} \ldots \plus{} \frac{F_n}{F_{n\plus{}1}},
where F_1 \equal{} F_2 \equal{} 1 and F_{n\plus{}2} \equal{} F_{n\plus{}1} \plus{} F_n for