MathDB
Cauchy-like ineq

Source: CWMO 2011 Q6

May 22, 2012
trigonometryinequalitiesinequalities unsolved

Problem Statement

Let a,b,c>0a,b,c > 0, prove that (ab)2(c+a)(c+b)+(bc)2(a+b)(a+c)+(ca)2(b+c)(b+a)(ab)2a2+b2+c2\frac{(a-b)^2}{(c+a)(c+b)} + \frac{(b-c)^2}{(a+b)(a+c)} + \frac{(c-a)^2}{(b+c)(b+a)} \geq \frac{(a-b)^2}{a^2+b^2+c^2}