MathDB
IMC 2001 Problem 7

Source: IMC 2001 Day 2 Problem 1

October 30, 2020
Polynomials

Problem Statement

Let r,s1r, s \geq 1 be integers and a0,a1,...,ar1,b0,b1,...,bs1a_{0}, a_{1}, . . . , a_{r-1}, b_{0}, b_{1}, . . . , b_{s-1} be real non-negative numbers such that (a0+a1x+a2x2+...+ar1xr1+xr)(b0+b1x+b2x2+...+bs1xs1+xs)=1+x+x2+...+xr+s1+xr+s(a_0+a_1x+a_2x^2+. . .+a_{r-1}x^{r-1}+x^r)(b_0+b_1x+b_2x^2+. . .+b_{s-1}x^{s-1}+x^s) =1 +x+x^2+. . .+x^{r+s-1}+x^{r+s}. Prove that each aia_i and each bjb_j equals either 00 or 11.