MathDB
(g(h(x))=h(g(x))

Source: ISI(BS) 2010 #5

May 17, 2012
functionalgebra proposedalgebra

Problem Statement

Let AA be the set of all functions f:RRf:\mathbb{R} \to \mathbb{R} such that f(xy)=xf(y)f(xy)=xf(y) for all x,yRx,y \in \mathbb{R}.
(a) If fAf \in A then show that f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y) for all x,yRx,y \in \mathbb{R}
(b) For g,hAg,h \in A, define a function ghg\circ h by (gh)(x)=g(h(x))(g \circ h)(x)=g(h(x)) for xRx \in \mathbb{R}. Prove that ghg \circ h is in AA and is equal to hgh \circ g.