MathDB
Geometrical inequality

Source: China TST 2003

June 29, 2006
inequalitiestrigonometryratiogeometry unsolvedgeometry

Problem Statement

(1) DD is an arbitary point in ABC\triangle{ABC}. Prove that: BCminAD,BD,CD{2sinA, A<90o2, A90o \frac{BC}{\min{AD,BD,CD}} \geq \{ \begin{array}{c} \displaystyle 2\sin{A}, \ \angle{A}< 90^o \\ \\ 2, \ \angle{A} \geq 90^o \end{array} (2)EE is an arbitary point in convex quadrilateral ABCDABCD. Denote kk the ratio of the largest and least distances of any two points among AA, BB, CC, DD, EE. Prove that k2sin70ok \geq 2\sin{70^o}. Can equality be achieved?