MathDB
Hard Inequality with reals

Source: IMOC 2021 A11

August 11, 2021
inequalities

Problem Statement

Given n2n \geq 2 reals x1,x2,,xn.x_1 , x_2 , \dots , x_n. Show that 1i<jn(xixj)2i=0n1(j=1nxj2i)\prod_{1\leq i < j \leq n} (x_i - x_j)^2 \leq \prod_{i=0}^{n-1} \left(\sum_{j=1}^{n} x_j^{2i}\right) and find all the (x1,x2,,xn)(x_1 , x_2 , \dots , x_n) where the equality holds.