MathDB
Problems
Contests
National and Regional Contests
Taiwan Contests
IMOC Shortlist
2021-IMOC
A11
Hard Inequality with reals
Hard Inequality with reals
Source: IMOC 2021 A11
August 11, 2021
inequalities
Problem Statement
Given
n
≥
2
n \geq 2
n
≥
2
reals
x
1
,
x
2
,
…
,
x
n
.
x_1 , x_2 , \dots , x_n.
x
1
,
x
2
,
…
,
x
n
.
Show that
∏
1
≤
i
<
j
≤
n
(
x
i
−
x
j
)
2
≤
∏
i
=
0
n
−
1
(
∑
j
=
1
n
x
j
2
i
)
\prod_{1\leq i < j \leq n} (x_i - x_j)^2 \leq \prod_{i=0}^{n-1} \left(\sum_{j=1}^{n} x_j^{2i}\right)
1
≤
i
<
j
≤
n
∏
(
x
i
−
x
j
)
2
≤
i
=
0
∏
n
−
1
(
j
=
1
∑
n
x
j
2
i
)
and find all the
(
x
1
,
x
2
,
…
,
x
n
)
(x_1 , x_2 , \dots , x_n)
(
x
1
,
x
2
,
…
,
x
n
)
where the equality holds.
Back to Problems
View on AoPS