3a = x^2 + 2y^2 ==> a = u^2 + 2v^2
Source: Bundeswettbewerb Mathematik 2005, 1st Round, problem 2
March 1, 2005
calculusnumber theory proposednumber theory
Problem Statement
Let be such an integer, that can be written in the form , with integers and .
Prove that the number can also be written in this form.
Additional problems:
a) Find a general (necessary and sufficent) criterion for an integer to be of that form.
b) In how many ways can the integer be represented in that way?