MathDB
inequality in 7 variables, [1,4]

Source: VJIMC 2012 2.4

June 1, 2021
inequalities

Problem Statement

Let a,b,c,x,y,z,ta,b,c,x,y,z,t be positive real numbers with 1x,y,z41\le x,y,z\le4. Prove that x(2a)t+y(2b)t+z(2c)ty+zx(b+c)t+z+xy(c+a)t+x+yz(a+b)t.\frac x{(2a)^t}+\frac y{(2b)^t}+\frac z{(2c)^t}\ge\frac{y+z-x}{(b+c)^t}+\frac{z+x-y}{(c+a)^t}+\frac{x+y-z}{(a+b)^t}.