MathDB
sum (ab+ 1)/(a^2 + ca + 1) >= 3/2 for triangle sidelengths

Source: Switzerland - 2016 Swiss MO Final Round p2

December 30, 2022
algebrainequalitiesGeometric Inequalities

Problem Statement

Let a,ba, b and cc be the sides of a triangle, that is: a+b>ca + b > c, b+c>ab + c > a and c+a>bc + a > b. Show that: ab+1a2+ca+1+bc+1b2+ab+1+ca+1c2+bc+1>32\frac{ab+ 1}{a^2 + ca + 1} +\frac{bc + 1}{b^2 + ab + 1} +\frac{ca + 1}{c^2 + bc + 1} > \frac32