MathDB
ineq function

Source: Vietnam TST 2000

April 3, 2007
functionalgebra unsolvedalgebra

Problem Statement

Let a>1a > 1 and r>1r > 1 be real numbers. (a) Prove that if f:R+R+f : \mathbb{R}^{+}\to\mathbb{ R}^{+} is a function satisfying the conditions (i) f(x)2axrf(xa)f (x)^{2}\leq ax^{r}f (\frac{x}{a}) for all x>0x > 0, (ii) f(x)<22000f (x) < 2^{2000} for all x<122000x < \frac{1}{2^{2000}}, then f(x)xra1rf (x) \leq x^{r}a^{1-r} for all x>0x > 0. (b) Construct a function f:R+R+f : \mathbb{R}^{+}\to\mathbb{ R}^{+} satisfying condition (i) such that for all x>0,f(x)>xra1rx > 0, f (x) > x^{r}a^{1-r} .